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ABSTRACT
Using Regular Path Queries (RPQs) is a common way to explore
patterns in graph databases. Traditional automata-based approaches
for evaluating RPQs on large graphs are restricted in the graph size
and/or highly complex queries, which causes a high evaluation cost.
Recently, the threshold rare label based approach applied on large
graphs has been proved to be effective. Nevertheless, using rare
labels in a graph provides only coarse information which could not
always guarantee the minimum searching cost. Hence, the Unit-
Subquery CostMatrix (USCM) based approach has been proposed to
reduce the parallel evaluation cost by estimating the searching cost
of RPQs. However, the previous approach does not take the joining
cost among subqueries into account. In this paper, the method
of estimating joining cost of subqueries is proposed in order to
accelerate the USCM based parallel evaluation of RPQs. Specifically,
the proposed method is realized by estimating the result size of
the subqueries. Through our experiments upon real-world datasets,
it is depicted that estimating joining cost enhances USCM based
approach up to around 20% in terms of response time.

CCS CONCEPTS
• Computing methodologies→ Search methodologies; Paral-
lel computing methodologies.
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Graph Queries, USCM, Parallel Evaluation, Estimating Joining Cost

1 INTRODUCTION
Regular path query (RPQ) is a common class of queries providing
a way of finding connections and patterns in a graph database
[11]. There have been a number of approaches for evaluating RPQs
[3], [20]. However, only a few of these approaches provide the
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performance guarantee on computational cost due to the large size
of graphs and/or highly complex queries. The need for developing
an efficient approach with low computational cost is particularly
evident for evaluating RPQs, which are most commonly used in
practice [17].

A well-known approach for evaluating RPQs is to exploiting
automata [9]. However, this approach has a disadvantage when
the applied graph is large: the long response time is triggered by
the mapping of the automaton states onto the graph. To deal with
this issue, optimization techniques have been studied to reduce the
evaluation cost of RPQs. Rewriting RPQs is introduced as the first
technique, in which, the original expression of an RPQ is trans-
formed into another one to reduce the search space by avoiding the
whole graph traversal [8], [5], [6]. Nevertheless, there is a limitation
when the RPQs are highly complex (e.g., an RPQ with a modifier
operator * over a group of alternate label).

Recently, a threshold rare label based approach has been proved
to be efficient to evaluate RPQs on large graphs [10]. The basic
idea of this method is that the original query is split into multiple
subqueries at rare labels, which are used as fixed points for graph
searching. However, the threshold rare label based approach has
some limitations since it relies on the presence of rare labels, their
positions on the queries, and their quantity in the graphs. Our
earlier work used Unit-Subqueries Cost Matrix (USCM) to estimate
the searching cost of RPQs and obtain the viability of the usage of
subqueries in RPQs evaluation [16]. However, this method does not
take the joining cost among subqueries into account. This neglect
could increase the response time when evaluating RPQs on a large
graph.

In this paper, we propose a method of estimating the joining cost
of subqueries in order to accelerate the USCM based parallel evalu-
ation of RPQs (called USCM-Join). We first propose cost functions
and algorithms to estimate the result size of a given RPQ, which is
directly related to the joining cost of subqueries. We then present
how to improve the evaluation performance of RPQs by splitting
them with a combination of the estimated joining and searching
cost. Finally, we conduct extensive experiments on both real-world
graphs and synthetic graphs, and the experimental results show
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that our USCM-Join approach outperforms the original one and
other approaches.

The rest of this paper is organized as follows. We introduce an
overview of related work in Section 2. We present some terms,
definitions, and splitting RPQs for parallel evaluation using USCM
in Section 3. Section 4 describes our proposal for estimating the
result size of RPQs. Section 5 describes how to evaluate an RPQ
in a parallel fashion by using the estimated evaluation cost. We
conduct experiments to evaluate our method in Section 6. Section
7 concludes with a summary of our proposal.

2 RELATEDWORK
There have been a lot of studies done on RPQs evaluation as well as
providing query languages on graph data [3], [10], [20]. A common
way to evaluate an RPQ is using the automata-based approach.
This approach converts the graph to a DFA (Deterministic Finite
Automaton), and the expression of an RPQ can be translated into
an automaton, then computes the cross-product of the automaton
to find the answer [9]. However, the limitation of this approach is
that every state in automaton needs to be mapped onto the graph,
which causes substantial memory space consumption and long
response time. To address this problem, a number of studies has
been proposed with optimization techniques to reduce the cost of
RPQs evaluation.

A strategy for reducing the RPQs evaluation cost is to optimize
the RPQs by rewriting them into other ones [8], [5]. FernandezMary
et al. [8] presented two optimization techniques based on graph
schemas. Calvanese et al. [5] proposed a view-based query rewrit-
ing approach for evaluating RPQs in semi-structured data which
guarantees the new ones contain all the answers of the original
ones. However, the query rewriting techniques still have some lim-
itations deal with highly complex RPQs, such as the nested queries
with modifier recursion, which leads to state explosion after con-
verting the rewritten query to a DFA for graph searching. Therefore,
several techniques have also been proposed for estimating query
size [13] or minimizing DFAs [2], [12].

Recently, a threshold rare label based approach has been proved
effectively to reduce the search space of RPQ evaluation on large
graphs [10]. The authors employ a cost-based technique to deter-
mine which labels in a graph and/or a query are considered to be
rare. Then, the rare labels are used as start-points, end-points, and
way-points in traversal time, which reduce the number of visited
nodes as well as the response time. However, the disadvantage of
this approach is that the graph search algorithm depends on the
presence of rare labels. So, in the case there are poor rare labels on
the graph and the RPQs, or long queries, this approach still takes a
high evaluation cost.

To the best of our knowledge, although there have been many
studies focusing on RPQs evaluation, researches related to evalua-
tion cost estimation of RPQs and its efficiency have not gotten much
attention [15]. Silke et al. [18] proposed cost functions to estimate
the response time and the result size of reachability path queries.
Davoust et al. [7] focused on estimating the volume transmitted
through the network while evaluating RPQs to provide appreciated
strategies for evaluating them on distributed graphs. Among all of

these works, there is no one that issues any cost estimating func-
tions relying on RPQ operators as well as connectivity of labels
in the query and the graph. In this work, we propose an efficient
method for evaluating an RPQ by splitting it into multiple smaller
subqueries based on estimation of their searching cost and joining
cost.

3 PRELIMINARIES
3.1 Graph Data and Regular Path Queries
Graph Data. We consider an edge-labeled directed graph 𝐺 = (𝑉 , 𝐸,
Σ), where𝑉 is a set of nodes, Σ is a set of labels, and 𝐸 ⊆ 𝑉 × Σ ×𝑉
is a set of edges. In which, an edge (𝑣 , 𝑎, 𝑢) indicates edge direction
from node 𝑣 to node 𝑢 labeled with 𝑎 ∈ Σ.

Regular Path Queries. An RPQ 𝑄 (𝑅) is a regular expression 𝑅

over some labels in Σ. Here, 𝑅 is defined in formally by 𝑅 = 𝜖 | 𝑎 |
𝑅 ◦𝑅 | 𝑅 ∪𝑅 | 𝑅∗, where 𝜖 is an empty value; a is a label in Σ; 𝑅 ◦𝑅,
𝑅 ∪ 𝑅, and 𝑅∗ denote concatenation, alternation, and Kleene Star,
respectively.

Let us categorize regular expression 𝑅 into four types of RPQ as
the following:

• Concatenation RPQ: 𝑅 = 𝑎0𝑎1 ...𝑎𝑛
• Alternation RPQ: 𝑅 = 𝑎0 ...𝑎𝑖−1 (𝑎𝑖 |𝑎𝑖+1)𝑎𝑖+2 ...𝑎𝑛
• Kleene Star RPQ: 𝑅 = 𝑎0𝑎1 ...𝑎𝑖−1𝑎∗𝑖 𝑎𝑖+1 ...𝑎𝑛
• Highly Complex RPQ: 𝑅 = 𝑎0𝑎1 ...𝑎𝑖−1 (𝑎𝑖 |𝑎𝑖+1)∗𝑎𝑖+2 ...𝑎𝑛

where 𝑎𝑖 ∈ Σ, 0 ≤ 𝑖 ≤ 𝑛. For clarity of presentation, we use the
symbol | for alternation operator and drop the symbol ◦ in terms
and equations, but keep them in examples.

To answer an RPQ, 𝑄 (𝑅), we need to search all paths in the
graph 𝐺 which satisfy a given regular expression 𝑅. Here, a path 𝜌

between node 𝑣0 and node 𝑣𝑘 in 𝐺 is a sequence

𝜌 = 𝑣0
𝑎0−−→ 𝑣1

𝑎1−−→ 𝑣2 ...𝑣𝑘−1
𝑎𝑘−1−−−−→ 𝑣𝑘

such that each (𝑣𝑖 , 𝑎𝑖 , 𝑣𝑖+1), for 0 ≤ 𝑖 < 𝑘 , is an edge. The sequence
of labels of a path 𝜌 , denoted as L(𝜌), is the string 𝑎0𝑎1 ...𝑎𝑘−1 ∈ Σ∗,
where Σ∗ is a set of all possible strings over the set of labels Σ. The

answer of Q(R) is a set of paths in the form 𝑄 (𝑅) = 𝑣
𝐿 (𝑅)
−→ 𝑢, where

𝑣,𝑢 ∈ 𝑉 , and 𝐿(𝑅) ⊆ Σ∗ is a regular language. Thus, a path 𝜌 is an
answer path of 𝑄 (𝑅) iff L(𝜌) ∈ L(R).

3.2 USCM-based Splitting RPQs for Parallel
Evaluation

In the USCM-based approach for parallel evaluation of RPQs [16],
an original RPQ is split into smaller subqueries based on the esti-
mated searching cost. In this method, a Unit-Subqueries Cost Matrix
(USCM) is generated by analyzing the cost of unit-subqueries in
a graph. A unit-subquery is a smallest subquery 𝑄 (𝑎𝑖𝑎 𝑗 ) concate-
nated by a start label 𝑎𝑖 with an end label 𝑎 𝑗 , where 𝑎𝑖 and 𝑎 𝑗 are
elements of the set labels Σ. The number 𝑎𝑖 edges connected to
𝑎 𝑗 edges is defined as the cost of a unit-subquery 𝜇 (𝑎𝑖 , 𝑎 𝑗 ). An
example of USCM is illustrated in Figure 1. For a given RPQ, by
estimating the searching cost of every possible set of its subqueries
with USCM, the RPQ is split into the best set of subqueries, which
has the minimum of estimated searching cost.
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Table 1: Example of USCM for a graph of social shopping network

Label:Count isLeaderOf friend follows knows purchased likes ownedBy Total

isLeaderOf:3 0 2 2 0 1 1 0 6

friend:2 0 0 1 3 1 3 0 8

follows:3 0 0 1 1 1 1 0 4

knows:6 3 0 0 2 3 1 0 9

purchased:4 0 0 0 0 0 0 4 4

likes:6 0 0 0 0 0 0 6 6

ownedBy:4 0 1 3 2 1 2 0 9

Figure 1: Example of a directed graph representing a social
shopping network.

4 USCM-BASED PARALLEL EVALUATION OF
RPQS BY ESTIMATING JOINING COST

Because the joining cost means the cost of merging results of sub-
queries, and it depends on the result size of the subqueries. There-
fore, we first describe how to estimate the result size of a given
RPQ as the joining cost. We then present how to split RPQs with
combination of the joining and searching cost.

4.1 Estimating Result Size of RPQs with USCM
(1) Concatenation RPQ. The result size is the number of paths on the
graph satisfying the query. We denote 𝛿 (𝑎𝑖 ) as the number of label
𝑎𝑖 in 𝐺 . It is undeniable that the result size of an RPQ with length
1, 𝑅 = 𝑎0, equals 𝛿 (𝑎0). While an RPQ with length 2, 𝑅 = 𝑎0𝑎1,
has result size being equal to 𝜇 (𝑎0, 𝑎1). Intuitively, the number
of paths satisfying the query with 𝑅 = 𝑎0𝑎1 ..𝑎𝑛−1𝑎𝑛 depends on
the number of paths on the graph being matched with regular
expression 𝑎0𝑎1 ..𝑎𝑛−1. We formulate the estimation of result size
by the equation below.

𝑃 = 𝜇 (𝑎0, 𝑎1) ×
𝜇 (𝑎1, 𝑎2)
𝛿 (𝑎1)

× · · · × 𝜇 (𝑎𝑛−1, 𝑎𝑛)
𝛿 (𝑎𝑛−1)

(1)

Example 1: Assuming that there is a graph 𝐺 as illustrated in
Figure 1, then a recommendation system can help leaders of a com-
pany/shop to find out which products are liked by people who are
followed by their employees. A regular expression 𝑅 representing
this finding is 𝑅 = 𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂 𝑓 ◦ 𝑓 𝑜𝑙𝑙𝑜𝑤𝑠 ◦ 𝑙𝑖𝑘𝑒𝑠 . By using Equation
1, we can estimate the result size of 𝑄 (𝑅) as follows.

𝑃 = 𝜇 (𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂 𝑓 , 𝑓 𝑜𝑙𝑙𝑜𝑤𝑠) × 𝜇 (𝑓 𝑜𝑙𝑙𝑜𝑤𝑠, 𝑙𝑖𝑘𝑒𝑠)
𝛿 (𝑓 𝑜𝑙𝑙𝑜𝑤𝑠)

= 2 × 1
3
≈ 1

Thus, the estimated result size is one which equals the number of

true paths satisfying the query, that is 𝑣3
𝑖𝑠𝐿𝑒𝑎𝑑𝑒𝑟𝑂𝑓
−−−−−−−−−−→ 𝑣7

𝑓 𝑜𝑙𝑙𝑜𝑤𝑠
−−−−−−−→

𝑣6
𝑙𝑖𝑘𝑒𝑠−−−−→ 𝑣10.
(2) Alternation RPQ. The result size of Q(R) in this case can be

calculated by summing the number of paths matched two regular
expressions: 𝑎0 ...𝑎𝑖−1𝑎𝑖𝑎𝑖+2 ...𝑎𝑛 and 𝑎0 ...𝑎𝑖−1𝑎𝑖+1𝑎𝑖+2 ...𝑎𝑛 . Specifi-
cally, we formulize the estimation by consider some specific cases
as the following:
• For the simplest case, 𝑅 = 𝑎0 (𝑎1 |𝑎2)𝑎3, there is no concate-
nation sub-query before and after a group of alternate labels.
The result size can be estimated like

𝑃 = 𝜇 (𝑎0, 𝑎1) ×
𝜇 (𝑎1, 𝑎3)
𝛿 (𝑎1)

+ 𝜇 (𝑎0, 𝑎2) ×
𝜇 (𝑎2, 𝑎3)
𝛿 (𝑎2)

(2)

• For a general case, 𝑅 = 𝑎0 ...𝑎𝑖−1 (𝑎𝑖 |𝑎𝑖+1)𝑎𝑖+2 ...𝑎𝑛 , where
𝑖 ≥ 2 and 𝑖 + 3 ≤ 𝑛, we estimate the result size of 𝑄 (𝑅) by
using the equation below.

𝑃 = 𝑃𝑖−1 ×
(
𝜇 (𝑎𝑖−1, 𝑎𝑖 )
𝛿 (𝑎𝑖−1)

× 𝜇 (𝑎𝑖 , 𝑎𝑖+2)
𝛿 (𝑎𝑖 )

+ 𝜇 (𝑎𝑖−1, 𝑎𝑖+1)
𝛿 (𝑎𝑖−1)

× 𝜇 (𝑎𝑖+1, 𝑎𝑖+2)
𝛿 (𝑎𝑖+1)

)
× 𝜇 (𝑎𝑖+2, 𝑎𝑖+3)

𝛿 (𝑎𝑖+2)
× · · · × 𝜇 (𝑎𝑛−1, 𝑎𝑛)

𝛿 (𝑎𝑛−1)

(3)

where 𝑃𝑖−1 is the number of paths that estimated by using Equation
1 on subquery 𝑎0𝑎1 ..𝑎𝑖−1.

(3) Kleene Star RPQ. Typically, the result size of an RPQ having
Kleene Star operator is much larger than other ones. It is the sum-
mation of all paths satisfying one of all possible paths which end at
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Figure 2: A tree representing all possible paths satisfying a
Kleene Star RPQ

Figure 3: A tree representing possible paths satisfying a com-
plex RPQ.

terminal-points as shown in Figure 2. It includes the number paths
with length 𝑛 (without 𝑎𝑖 ), 𝑃𝑂 , and the remained paths containing
at least one label 𝑎𝑖 , 𝑃𝐾 . Let 𝑃 is the result size in this case, we have
𝑃 being equal to the summation of 𝑃𝑂 and 𝑃𝐾 , where 𝑃𝑂 and 𝑃𝐾
are estimated by the equations below.

𝑃𝑂 = 𝑃𝑖−1 ×
𝜇 (𝑎𝑖−1, 𝑎𝑖+1)
𝛿 (𝑎𝑖−1)

× · · · × 𝜇 (𝑎𝑛−1, 𝑎𝑛)
𝛿 (𝑎𝑛−1)

(4)

𝑃𝐾 = 𝑃𝑖 × (1 + 𝜔 + 𝜔2 + .. + 𝜔𝛾 ) × 𝜇 (𝑎𝑖 , 𝑎𝑖+1)
𝛿 (𝑎𝑖 )

× · · ·

× 𝜇 (𝑎𝑛−1, 𝑎𝑛)
𝛿 (𝑎𝑛−1)

(5)

Algorithm 1 EstimateAlterStar

Require: pre: string before alternation operator, a: the first label
in group of alternation operator, b: the second label in group
of alternation operator, suf : string after alternation operator,
and USCM

Ensure: P : the number of paths satisfying 𝑅
1: 𝑃𝑂 ← EstimateConcat(pre + suf, USCM);
2: 𝑃 ← 𝑃 + 𝑃𝑂 ;
3: 𝑃1 ← EstimateConcat(pre + a, USCM);
4: 𝑃2 ← EstimateConcat(pre + b, USCM);
5: if 𝑃1 ≥ 1 then
6: EstimateAlterStar(pre + a, a, b, suf, USCM);
7: if 𝑃2 ≥ 1 then
8: EstimateAlterStar(pre + b, a, b, suf, USCM);

where 𝜔 =
𝜇 (𝑎𝑖 , 𝑎𝑖 )
𝛿 (𝑎𝑖 )

, and we assume that 𝜔 < 1 as usual; and 𝛾 is

the longest path length of 𝑎𝑖 in the result of Q(R) as illustrated in
Figure 2, 𝛾 ∈ N.

Here, how to specify the upper bound of𝛾 for a given RPQ is non-
trivial. Fortunately, we can estimate 𝛾 by using USCM. Obviously,
to obtain the paths with 𝛾 labels 𝑎𝑖 , the number of path with 𝛾 − 1
labels 𝑎𝑖 need to be greater than or equal to one. So, we have the
equation

𝑃𝑖+𝛾−1 = 𝑃𝑖 × 𝜔𝛾−1 (6)

Then, 𝑃𝑖+𝛾−1 ≥ 1 means that

𝛾 ≤ log𝜔 (1/𝑃𝑖 ) + 1 (7)

(4) Highly Complex RPQ. Similar to the result size of an RPQ in
case of Kleene Star operator, the result size of a highly complex RPQ
is the summation of all paths satisfying one of all possible paths
from start-label 𝑎0 to end-label 𝑎𝑛 . However, in the case of a highly
complex RPQ, there are multiple stop-points and terminal-points
as shown in Figure 3, so it is difficult to formalize the estimated
result size by using equations. To estimate the result size of the
highly complex RPQ,𝑄 (𝑅), with 𝑅 = 𝑎0𝑎1 ...𝑎𝑖−1 (𝑎𝑖 |𝑎𝑖+1)∗𝑎𝑖+2 ...𝑎𝑛 ,
we propose an algorithm which is shown in Algorithm 1. Here,
the input arguments (e.g., pre, a, etc.) of the function EstimateAl-
terStar are extracted from the highly complex RPQ. Initially, we
estimate the result size of the concatenation RPQ (𝑎0𝑎1𝑎𝑖−1𝑎𝑖+2 ..𝑎𝑛)
whose answers have smallest path length and have not included
the alternate labels of the complex RPQ (line 1), by using estima-
tion function EstimateConcat (not shown). The result is added to
variable P which is the number of paths statisfying R (line 2). Note
that, the value of P would be increased after calling the recursive
function EstimateAlterStar. We then perform estimating the result
size of concatenation RPQs having longer path length by adding
alternate labels one by one and re-calling EstimateAlterStar proce-
dure (line 3-4). Estimating of concatenation RPQs having longer
path length is repeated until the estimated number of paths of every
concatenation RPQ is smaller than one (lines 5-8).



Accelerating Parallel Evaluation of Regular PathQueries on Large Graphs by Estimating Joining Cost of Subqueries
SMA 2020, September 17-19, 2020, Jeju, Republic of Korea,

4.2 Parallel Evaluation of RPQs by Exploiting
Joining Cost

Let us consider an RPQ, Q(R), which is split into 𝑘 subqueries. The
estimated parallel evaluation cost of𝑄 (𝑅) consists of the estimated
searching cost and the estimated joining cost of its subqueries. First,
the estimated searching cost 𝐶𝑆 of 𝑄 (𝑅) can be computed by using
Equation 8

𝐶𝑆 =𝑚𝑎𝑥 [𝐶𝑞1 ,𝐶𝑞2 , ..,𝐶𝑞𝑘 ], (8)

where𝐶𝑞𝑖 is the estimated searching cost of subquery 𝑞𝑖 , 0 < 𝑖 ≤ 𝑘 ,
which is estimated by using the method in our previous works [16].

Next, we estimate the joining cost of the subqueries. Here, we
do not consider methods for optimizing the joining cost such as
multiway joins [1] or top-k join queries [19]. We therefore use a
join sequence for subqueries’ results. That is, the two first partial
answers will be joined, then the result will be used to join with the
third partial answer, and so on. In our implementation, a merge-join
is used to match two partial answers. Thus, a𝑂 (𝑀 ∗𝑁 ) merge-like
step is performed to determine the matching paths, where𝑀, 𝑁 are
the result sizes of two partial answers. Let us assume that 𝑃𝑞𝑖 is the
result size of subquery 𝑞𝑖 , and 𝐶 𝐽 is the estimated joining cost, so
we can formalize 𝐶 𝐽 by using the equation below:

𝐶 𝐽 = 𝑃𝑞1 × 𝑃𝑞2 + 𝜂 (𝑞1,𝑞2) × 𝑃𝑞3 + · · · + 𝜂 (𝑞1,𝑞2, · · · ,𝑞𝑘−1) × 𝑃𝑞𝑘
(9)

where 𝜂 is the function for estimating the result size of the query
which is established by concatenation of subqueries.

Finally, to obtain the parallel evaluation cost, denotes as 𝐶𝑃𝐸 ,
we need to sum up the searching cost 𝐶𝑆 and the joining cost 𝐶 𝐽 .
However, they are not represented by the same unit, in which,
the unit of the searching cost is the number of traversed edges;
meanwhile, the unit of the joining cost is the number of operations
(merge-like). Therefore, we need to use a conversion to make the
units be uniform. To do this, we analyze the searching cost and try
to represent it in the number of operations. In practice, in order
to find the nodes for the next searching step, each traversed edge
is checked whether there exists a matched label with any label
of transitions from a current state in the query automaton. We
assume that the cost of an operation of matching two labels in
the searching step is similar to the one in the joining step. By
specifying the searching cost likes this way, we can use the number
of operations as the unit of the searching cost (from now on). Let
us assume that 𝛽 is the average degree of the query automaton,
and it can be obtained after reading query. So, we can estimate the
parallel evaluation cost in the number of operations as follows.

𝐶𝑃𝐸 = 𝐶𝑆 × 𝛽 +𝐶 𝐽 (10)

Based on estimated evaluation cost, we can reduce the cost of
parallel evaluation of an RPQ 𝑄 (𝑅) on multiple CPU cores. Let us
assume that 𝑘 is a given number of CPU cores, which can be used to
evaluate𝑄 (𝑅). Our algorithm is done in four steps as the following:

Step 1: Split 𝑅 into every possible set of subqueries so that the
number of subqueries in each set is less than or equal to k.

Step 2: Estimate the evaluation cost of every set of subqueries
by using USCM, in which, both the searching cost and joining cost
are considered. Then, we select only one set of subqueries, 𝑆𝑏𝑒𝑠𝑡 ,
which has a minimum estimated evaluation cost.

Figure 4: Response time comparison on different graphs.

Step 3: Evaluate 𝑆𝑏𝑒𝑠𝑡 in a parallel manner, in which, each sub-
query is searched separately under a CPU core.

Step 4: If each search process found at least one path, we merge
the results from |𝑆𝑏𝑒𝑠𝑡 | subqueries to get the final answer.

5 EXPERIMENTAL EVALUATION
In this section, we conducted experiments for evaluating the effec-
tiveness of our proposed method. We compares the performance
of our USCM-Join approach with USCM-Basic approach (with-
out consideration of joining cost) and other approaches including
automata-based approach (AUT) [9] and the threshold rare label
based approach (TRL) [10].

Environments. We implemented all algorithms in Java. Exper-
iments are conducted on a single personal computer which has
3.60GHz Intel Core i7, 4 CPU cores, and 8.0GB of RAM.

Datasets. We used two real-life graphs: the first one is a protein-
protein interactions network named Alibaba[10], which contains
52,050 nodes, 340,775 edges, and 649 labels. The second is a knowl-
edge graph named Yago, which is extracted from themain entities of
Yago3 [14] with 1,756,958 nodes, 3,615,249 edges, and 13 labels. We
also used a synthetic graph with around 16,000 nodes and 304,000
edges. which is generated by using Gephi [4]. We used 15 distinct
labels to annotate edges for these graphs. The occurrence of labels
follows the Zipfian distribution.

Query sets. With experiments on Alibaba graph, we used the
queries set given by previous research [10]. We analyzed ten thou-
sand queries and found that approximately 87% proportion is simple
RPQs, 3% and 10% proportion contain nested RPQs with and with-
out recursive modifiers, respectively. For Yago graph, we created a
query set of 40 RPQs with length varied from 4 to 8. The query set
has 10 queries for each type of RPQs in Section 4. For the synthetic
graphs, we mainly used 1,000 random RPQs with 80% proportion
of having concatenation and alternation RPQs, 15% proportion of
having Kleene Star RPQs, and 5% proportion of having complex
RPQs with recursive modifiers.

Experimental Results. Figure 4 illustrates the average response
times of four different approaches on both real-world graphs and
the synthetic graph. We observed that USCM-Join approach outper-
forms other approaches in all the cases. Especially, it reduces the
response time around 20% on average compared to the USCM-Basic
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Figure 5: Evaluation cost comparison in detail on Yago graph.

approach. To explain how our proposed method reduces response
time significantly in detail, we chose 10 queries randomly on Yago
graph and shown their evaluation cost in Figure 5. We observed
that AUT approach without separating RPQs has no joining cost,
but high searching cost. TRL and UCSM-Basic approaches sepa-
rating RPQs without joining cost consideration sometimes have
high joining cost. Meanwhile, USCM-Join separating RPQs with
combination of joining and searching cost achieved the minimum
evaluation cost.

6 CONCLUSION
This paper presented a method of estimating the joining cost of sub-
queries in order to accelerate the USCM based parallel evaluation
of RPQs. The proposed method is realized by estimating the result
size of subqueries, which are used to estimate the joining cost of the
subqueries. Then, the evaluation performance of RPQs is improved
by splitting them with combination of the estimated joining and
searching cost. Through the experimental results upon real-world
datasets, we found that estimating joining cost enhances USCM
based approach up to around 20% in terms of response time. In the
future, we will evaluate (1) the impact of query types (concatena-
tion, alternation, Kleene Star, and complex RPQs) on the accuracy
of result size estimation and (2) the impact of the different number
of subqueries on our USCM-Join approach.
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